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PARAMETER DETERMINATION IN 
COMPOSTING – Part II 

Incorporating substrate diffusion and substrate solubilisation 

P. D. Chapman 

 

1 Introduction 
In an earlier paper (Chapman, Parameter determination in composting - Part I: The use of overlaying, 

interdependent sets of equations as a solution to the over parameterization problem, 2009a) high 

precision microbial kinetic parameter determination was shown to be possible, but only for a single 

electron acceptor/substrate combination. This paper looks at the substrate side of this combination 

to see if the single substrate constraint, required for high precision parameter determination, can 

survive given that the substrate ‘pool’ will also contain diffused and solubilised substrate. Part III of 

this series (Chapman, 2009b) addresses questions arising from the application of diffusion laws at 

sub-particle scales. 

It will be argued here that several elements of compost theory are automatically incorporated into 

parameters that are determined using a simple microbial kinetics, in particular: 

 The net effect of substrate diffusion at sub-particle scales. 

 Continuous addition of soluble substrate to the ‘pool’ from solubilisation of insoluble 

substrate. 

It is further argued that for most composting applications, keeping these elements outside the 

modelling environment (incorporating them automatically as a combined parameter) is sufficient for 

three reasons:  

 The vast majority of composting particles will have an anaerobic core and hence substrate 

diffusion can be expected. Consequently they will all behave similarly. 

 The vast majority will have an insoluble fraction (albeit possibly different types and 

quantities of compounds) which will be solubilised. This source can be shown to have 

computational space in a simple kinetic, and hence can be incorporated automatically. 

 It is possible that any increased precision that may theoretically accrue from adding 

additional substrate parameters (which would occur if solubilisation and substrate diffusion 

were incorporated as model parameters), may be negated if high precision determination of 

the basic microbial kinetic parameters is compromised when these additional substrate 

parameters are made explicit. 
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2 Method 
Consider two points on a composting time 

course, t1 and t2. Each of these points will have 

two associated composting rates: 

o An experimentally determinable 

composting rate (Qdata(t1) and Qdata(t2)).  

o A model descriptor of the composting 

rate (Qmodel(t1) and Qmodel(t2)).  

 

Two questions can be asked of the model 

descriptor: 

1) The adequacy of the model description of the experimentally determined composting time 
course – i.e. what is its statistical fit? This is the subject of part I. 

2) The scientific basis of each parameter that is determined (subject of this paper - part II). 

In terms of question 1, first-order kinetics with a normalised biomass (NB) function was used to 

describe two different composting time courses with an r2 better than 0.94 in part I of Chapman 

(2009a). With such a high r2 this descriptor could therefore be considered adequate for the purposes 

of question 1. 

To consider question 2, the scientific basis of the parameters used in question 1 needs scrutiny. The 

question here is a more fundamental one than that argued for the rate constant base in Part I of this 

series. The scientific basis arises from the assumptions in the model (which could be any equation of 

any order in the case of a curve fitted without consideration of microbial kinetics – but is first-order 

kinetics operating within a non-diffusible substrate solution of diffusion laws and a spherical 

geometry in the case of Chapman, Part I). A composting model with good roots in microbial kinetics 

and a high r2 will have a wider application than one which has no roots in microbial kinetics.  

The first-order kinetics model of Chapman (2008) was well rooted in microbial kinetics and diffusion 

laws while the starting substrate concentration was determined using the experimental data. 

However, two elements ignored in the model assumptions were substrate diffusion (a non-diffusible 

substrate solution was chosen) and solubilisation of insoluble substrate (this is implicit in the nature 

of substrate fractions). The adequacy of this stance is addressed here. 

2.1 Derivation 
From first-order kinetics the nature of the relationship between the experimentally observed 

composting rate and substrate concentration is: 

Equation 1 

𝑄𝑚𝑜𝑑𝑒𝑙  𝑡 = 𝑘 × 𝐸(𝑡) × 𝑁𝐵(𝑡) 

t2 t1 

Q(t2) 2 

1 
Q(t1) 

Figure 1 – Two points on a hypothetical composting time 
course. Each point in time (t) will have an associated 
composting rate (Q). 
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With a high r2 then Qmodel closely approximates Qdata at all t’s and the ratio of the substrate 

concentration (E) at points 1 and 2 in Figure 1 can be written as: 

Equation 2 

𝑄𝑑𝑎𝑡𝑎 (𝑡1)

𝑄𝑑𝑎𝑡𝑎 (𝑡2)
=

𝑄𝑚𝑜𝑑𝑒𝑙 (𝑡1)

𝑄𝑚𝑜𝑑𝑒𝑙 (𝑡2)
=

𝐸(𝑡1) × 𝑁𝐵(𝑡1)

𝐸(𝑡2) × 𝑁𝐵(𝑡2)
 

 

Where the equality between Qdata(t) and Qmodel(t) is only exact if r2 =1. 

From first-order kinetics the nature of the relationship between E(t1) and E(t2) is: 

Equation 3 

𝐸 𝑡1 

𝐸 𝑡2 
=

1

exp(−𝑘 × 𝑡1→2 × 𝑁𝐵 𝑡1 )
= exp(𝑘 × 𝑡1→2 × 𝑁𝐵(𝑡1)) 

Where:  t is in days and k is in d-1 form.  For the thermodynamic form of the rate constant used in 

part I divide the d-1 form by 0.0864. 

Combining Equation 2 with Equation 3 it can be seen that for data with a high r2, the same 

parameters that are determined from the experimental data also describe the time course of 

substrate concentration. Therefore, E(t2) must be the ‘actual’ E(t2) – otherwise the r2 would reflect 

the miss-fit. It follows that if substrate diffusion and solubilisation have occurred in the time period 

t1→ t2 then these must be included in E(t2) in Equation 3.  

Therefore E(t2) could be written in more expanded form as: 

Equation 4 

𝐸 𝑡2 = 𝐸𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡  𝑡2 + 𝐸𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑 (𝑡2) + 𝐸𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 (𝑡2) 

There are two cases that can be made to argue that this complexity is automatically incorporated 

into first-order kinetics: 

2.1.1 Case 1 – Experimental and derivational 

For simplicity, consider that Figure 1 covers that segment of the composting time course when 

biomass is not limiting the composting rate i.e. the NB function equals 1 – this simplifies the 

mathematics so the arguments become clearer, the same logic would also apply if NB < 1 although 

the mathematics would be more complicated. For this segment, the rate constant can be 

determined from the composting rate at t1 and t2 by rearranging Equation 3 and substituting 

Equation 2: 

Equation 5 

𝑘 =
ln(

𝐸 𝑡1 
𝐸 𝑡2 

)

𝑡1→2
=

ln(
𝑄 𝑡1 
𝑄 𝑡2 

)

𝑡1→2
 

It becomes apparent that the rate constant determined using experimental data and Equation 5, (or 

its more complex version in Chapman (2009a)) is net of all the influences on E, so long as the r2 is 
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sufficiently high. That is, if a simple model is a good descriptor of the composting time course then 

the rate constant that is determined must include diffused substrate and substrate released from 

insoluble sources.  

Leading to the question as to why bother to add computational complexity (and additional 

parameters) unless: 

 The simple kinetic fails to adequately describe the composting time course or 

 It is necessary to know each of the components separately. Such as if an experiment 

required using particle sizes that straddled the critical radius. In this case the rate constant 

for a fully aerobic particle (one smaller than the critical radius) may differ from the rate 

constant for particles with an anaerobic core.  

 It is important to know E(0) accurately. 

Note: that the value of E(0) is dependent on the value of the rate constant. The experimentally 

observed composting rate is modelled by these two parameters hence change one and the other 

must change for the model to explain the composting time course. 

2.1.2 Case 2 - Theoretical 

A theoretical test can be applied to gain insights into the adequacy of using first-order kinetics as a 

descriptor of the composting time course. If incorporating these other sources of substrate results in 

an equation where E(t) is described by Equation 3, then the combined parameter will behave as a 

single one over the entire time course. Such a state could exist if the proportion of these other 

contributions remains fixed to the resident substrate. In this case let α represent this fixed 

proportion then Equation 4 can be written as: 

Equation 6 

𝐸 𝑡2 =  𝐸𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡  𝑡2 ×  1 + 𝛼𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑 + 𝛼𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑   

Then as long as Eresident is described by Equation 3, and the proportions remain constant, a valid first-

order kinetics descriptor of a composting time course arises which incorporates these other sources 

of substrate.  

A requirement arising from Equation 6 is that the added substrates need to be a fixed proportion of 

the resident substrate.  

The question as to whether each component remains a fixed proportion over time can be addressed 

for each component independently of the other. A superficial look at each of these components 

follows: 

2.1.2.1 The diffused substrate component 

The diffused substrate component of Equation 6 is net of addition and consumption. The resulting 

dynamic balance introduces an added level of complexity in that a rigorous analysis would need to 

account for:  

 Diffusion coefficients being affected by molecular weights. High molecular weight 

compounds would therefore move differently from low molecular weight compounds. 

 Consequently, each compound may need a specific rate constant. 
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This level of complexity can be reduced by considering that for each compound the diffusion driver is 

concentration difference with the flux determined by Fick’s first law of diffusion.  Fick’s first law 

states that the flux of a substance is equal to a constant times concentration difference divided by 

distance (J = -D * dC/dx). Considering that for the composting situation being discussed here, the 

concentration difference leading to substrate diffusion arises from substrate degradation, then for 

any compound at any time (t) this difference (and consequently the diffusion flux) is likely to be 

explained to a large degree by Equation 3.  

While a full analysis should await a larger study meshing diffusion laws with microbial kinetics (as it 

also involves moving boundaries), it would seem reasonable to expect the net effect of the diffusion 

flux to be a fixed proportion of the resident substrate, with the common element linking the two 

being the rate constant.  

2.1.2.2 The released substrate component 

The fast fraction is likely to be entirely soluble substrate therefore the slow and humification 

fractions can be expected to be donators of Ereleased. Consequently, the absolute amount of substrate 

released by solubilisation would be more likely to be influenced by the insoluble substrate 

concentration and the quantity of exo-enzymes present (i.e. the composting rate of the slow and 

humification fractions), rather than the resident pool of soluble substrate. The proportion αreleased 

could change over time and the validity of first-order kinetics fail due to violation of the requirement 

for the proportion of the resident substrate to be constant (Equation 6).   

The question is how this variability can be accommodated in the first-order kinetics formulation? 

Hess’s law of constant heat summation states that the net heat of a chemical reaction is equal to the 

algebraic sum of the heats of any intermediate reactions. That is, the existence of intermediate 

solubilised compounds has no influence on the overall heat loss if these intermediate compounds 

are further oxidised. The same heat loss would occur if the substrate were oxidised directly to CO2 

and H2O without any intermediate products. This is the case with solubilisation where large 

molecules are broken into smaller ones that can then be utilised by cells.  

To consider the effect of this law on parameter determination, consider the composting time course 

that would arise if a single insoluble substrate (such as cellulose or hemicellulose) was being 

composted. This author would argue that it would not be possible to distinguish the solubilisation 

signal from the consumption signal (in the manner that the fractions were able to be distinguished in 

part I). They would appear as a single fraction and a single ‘combined’ rate constant would be 

determined. If this paper were to explain this effect from a scientific perspective, then Monod 

kinetics could be used to determine the concentration of soluble compounds at which the 

consumption rate = solubilisation rate and the time course of the solubilised substrate concentration 

plotted against the concentration of the insoluble substrate. I would expect this plot to be linear 

with the slope representing the net effect of the two rate constants and the half-rate constant. In 

effect solubilisation becomes rate limiting and the contribution to composting from consumption of 

these soluble compounds is constrained by this release rate. So while, with a strictly chemical 

classification one may be able to identify a fast fraction (the solubilised substrate) and a slow 

fraction (the insoluble substrate), their interdependence would mean that they would appear to be a 

single fraction in their experimental time course.  
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So how can this complexity reduce to a form suitable for inclusion in a first-order kinetics model?  

Equation 6 has been shown to be a suitable form for inclusion, leading to the consideration as to 

whether Equation 6 adequately accounts for solubilisation and consumption within each fraction.  

Firstly, Equation 6 needs to be formulated for each fraction (S) as: 

Equation 7 

𝐸𝑆 𝑡2 =  𝐸(𝑆)𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡  𝑡2 ×  1 + 𝛼 𝑆 𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑 + 𝛼 𝑆 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑   

With solubilisation being rate limiting, the solubilisation rate constant would determine the 

fraction’s composting time course and hence also the time course of E(S)resident(t2); while α(S)released 

describes the subsequent oxidation of the solubilised products. Hence, for a fraction which requires 

solubilisation of its substrate (where the solubilised products are subsequently utilised), it becomes 

apparent that the two processes under consideration can be incorporated into Equation 7 but only 

when it is formulated for each fraction.  

The magnitude of α(S)released would be determined by the stoichiometric relationship between the 

substrate, the solubilised compounds and the final breakdown products. Consequently, it is 

reasonable to assume that α(S)released  will be constant. It also becomes apparent that the rate 

constant as determined by Equation 5 would be a ‘combination’ of the solubilisation rate constant 

(explaining the time course of E(S)resident(t2)) and the contribution from the solubilised compounds – 

the effect of this on the magnitude of the rate constant is discussed further below. 

There may be a question as to whether the proportioning method advocated in Part I adequately 

allocates all the experimental time course of the soluble components to each fraction (as required 

for Equation 7), although the high r2 would suggest (rather than prove) that this is happening. 

However, with both theoretical space in the first-order kinetics model and a high r2 it is argued here 

that solubilisation is included in each fraction’s time course and hence automatically included in the 

parameters. 

It is therefore a different interpretation of Equation 7 that is required to account for solubilisation. If 

the rate limiting step determines the time course of E(S)resident (t2), then Equation 7 explains all 

fractions, thus: 

 For the fast fraction, the rate limit is the internal machinery of the microbes and αreleased →0.  

E(f)resident(t2)  is the pool of highly degradable substrate, which is most likely to be all soluble. 

It is possible that some compounds which have the kinetic characteristics of the fast fraction 

may need to go through an intermediate stage; hence αreleased may not be 0. 

 For the fractions which require solubilisation, it is the kinetics of solubilisation which is rate 

limiting and therefore determines Eresident(t2). While the contribution to the observed 

composting time course from degradation of the resulting solubilised compounds is 

incorporated into αreleased.  

First-order kinetics is preserved as an adequate descriptor even though for the fast fraction the 

soluble components appear as resident substrate, while for the insoluble fractions the same 

compounds would appear as substrate released.  
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The theoretical space identified in Case 2 is supported by the experimental and derivational 

evidence of case 1. 

If αreleased did vary over time then the effect of this variation on the rate constant value should be 

apparent. The method for determining the rate constant detailed in part I enables determination of 

the rate constant at each data point. Hence we have the tools available to detect any variation which 

may exist. 

Consider the effect on the calculated rate constant by using E(t2) with a variable αreleased. An increase 

in αreleased in Equation 6 will result in an increase in E(t2) with a corresponding decrease in the rate 

constant calculated using Equation 5 – see Figure 2 for the effect of this. 

 

 

Figure 2 – The theoretical effect of changing αreleased (or αdiffused) on the calculated rate constant. Note that diffused 
substrate is entered as zero for this calculation as no change is expected in its proportion. The released substrate 
proportion begins at zero. Released substrate is assumed to be incorporated into the rate constant determination, and we 
will be detecting a change from this datum. 

In Figure 2 that part of released substrate which occurs in the time period over which the rate 

constant is determined is assumed to be incorporated into the rate constant, hence the graph begins 

at zero and the x axis is the change from this datum. It is the change from this datum that could be 

detected in experimental data. 

3 Results 
If solubilised and diffused substrate contributions are constant then the rate constant determined at 

each point (using Equation 5 with the slope determined by linear regression - as detailed in Part I), 
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should show little variation in its value. Figure 3 however shows variation in its calculated value, 

rising to a peak and then falling1.  

 

 

Figure 3 – The fast fraction rate constant determination for Trial 4 data (0.8 cm dog sausage) between tmax + 15 hours 
and Q/Qmax = 0.2. Source data from: Chapman (2008). 

Up to the peak of the graph, precise rate constant determination is potentially compromised by an 

incorrect determination of the one-exponent constant used in determination of NB. The effect of the 

NB runs counter to the effect of the rate constant, and the two are interdependent making 

separation of the experimental signals more difficult. However, the impact of incorrect 

determination lessens as NB approaches 1, meaning that the value of k is likely to be more precise 

(less influenced by the NB value) as one moves to the right in Figure 3. If this were the only influence 

on determination of k then the graph should plateau when NB approaches 1 (or at the very least the 

rising trend should have continued). The influence of NB therefore is not a reason for the observed 

decline in k. Some other impact on determining the value of k must be involved.  

It is suggested that this could be an effect of a change in the magnitude of the contribution from 

either solubilised or diffused substrate. In theory this effect is possible, and the experimental signal 

is consistent with an increase in either of these contributions (discussed above). In this case a change 

in the proportion in the order of 0.1 is a possible explanation for the decrease in the value of k from 

its peak. 

Further possible reasons for this change are discussed below.  

4 Discussion 
The experimental evidence gave two apparently conflicting signals for this single set of data: 

                                                           
1
 Note the slow fraction k of the same trial showed a steady decline in the value of k over its equivalent period. 

The actual shape of each fraction’s rate constant curve may be specific to each set of data. This example 
should not be considered to apply generally. 
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 A very high r2 indicating a good fit for the model. 

 Evidence from the rate constant determination suggesting further consideration is required. 

It is possible that a full explanation lies in the “1-exponent” formulation for the NB developed in 

Chapman (2009a). This however, is not the subject of this paper. More high quality data would be 

needed to resolve this question. 

Of the issues being discussed in this paper, there are five possible explanations for this decline in the 

rate constant (assuming the NB determination or refinement –as discussed above is unlikely to 

explain the decline in the rate constant): 

 Variation in αreleased. Possible sources could include compounds from anoxic or anaerobic 

degradation or death of biomass. 

 Variation in αdiffused. 

 Incorrect determination of the slow rate constant. 

 The proportioning method described in Part I is not including the solubilised component in 

the fraction’s composting time course. 

 Experimental artefact, such as reactor calibration errors. 

For example, variability in αreleased could arise from the breakdown products of anoxic degradation 

(nitrous oxide etc), or anaerobic degradation (volatile organic acids, methane etc) which are 

subsequently oxidised in the aerobic zone and detected. The time course of anoxic, and anaerobic, 

degradation kinetics are likely to differ from aerobic kinetics (at the very least they occur in different 

parts of the particle) and could change the αreleased proportion over time – discussed further below.  

Dead biomass is known to be highly degradable and the death rate could be expected to increase as 

the declining quantity of substrate leads to starvation of the resident biomass. A steady death rate 

could be expected to be incorporated into the slow fraction rate constant determination (as there is 

little difference between the kinetics of biomass and soluble compound degradation this would be 

incorporated into αreleased) but if the death rate changed this could appear as unallocated αreleased in 

the fast fraction.  

Incorrect determination of the slow fraction’s rate constant could leave a residue quantity of soluble 

compounds not accounted for in the slow fraction’s rate constant determination, but visible in the 

experimental data of the fast fraction. In part I of this series the possible existence of a small anoxic 

contribution to the composting time course was raised and it was argued that, as it was not allowed 

for in the parameter determination algorithm, this could have affected the magnitude of the slow 

fraction rate constant. The model overestimate of the slow fraction composting rate (noted in part 

1) became apparent at day 6 but could have been exerting an influence by day 3.8 when the decline 

in the value of the fast fraction rate constant began in Figure 3 above. The steady decline in the 

value of k indicates a constantly increasing αreleased and this would be consistent with the growth 

phase of the anoxic period. 

Alternatively, an explanation may arise from either a methodological source (the proportioning 

method) or errors in measurement arising, for example, from calibration errors in the experimental 

reactors. Measurement errors would become more significant at low composting rates so the net 
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effect will change over the composting time course and affect the slow and humification fractions 

more than the fast fraction.  

Of these possible sources of variation in αreleased or αdiffused as reflected in the variation in the value of 

k, this author would suggest that resolving the possible anoxic contribution that was identified in 

Part I should be done first. A possible anoxic contribution has both analytical space and experimental 

evidence to support its existence. Accommodating an anoxic contribution would impact on the value 

of the slow fraction rate constant and the effect of this on the plot in Figure 3 should be assessed 

before investigation of alternative explanations.  

Whatever the source of this variation in the value of k that is determined, the effect of constraining 

the segment of the data set used for rate constant determination, transfers the impact of this 

variation in αreleased or αdiffused to the latter part of the fraction’s composting time course. Using only a 

part of the data set means that the rate constant would only be valid for the part of the time course 

used in the rate constant determination. Consequently, the part of the time course not used in rate 

constant determination (but used in the model prediction) may well have a low r2 that arises from 

the first-order assumption failing due to a changing magnitude of αreleased. However, as this part of 

the fraction’s time course coincides with the next fraction dominating the composting rate, this error 

becomes insignificant in terms of the modelled composting time course. That is, while the error may 

be significant for the fraction there is little impact on the model regression coefficient.   

The modelling question needs to be whether this constraint (which retains high precision microbial 

kinetic parameter determination by treating all sources of substrate as one – a requirement 

identified in part I of this series) is preferable to the additional parameters that would be required if 

solubilisation and diffusion were modelled separately – with the possible loss of precision in 

determining the values of the kinetic parameters due to over-parameterisation? 

5 CONCLUSION 
A model which is inherently capable of describing all the physical characteristics of a composting 

time course (lag/growth phase, two (or more) composting rate peaks, rounded and sharp peaks etc) 

will be useful from a pragmatic perspective (in that with calibration it can adequately describe the 

composting time course). However the ability of the model to predict other situations is potentially 

limited by the assumptions inherent in the model formulation. If these assumptions (and their 

associated parameters) are based firmly in microbial kinetics and the laws of physics then the 

applicability of the model will be widened.  

With composting being an inherently complex 3-phase system, the number of fundamental 

parameters that could be included is considerable. This complexity is further compounded by the 

interdependence between all the parameters. With insufficient data to be able to determine each 

parameter accurately the model in essence becomes phenomenological where the regression 

coefficient may be high, but the parameters lose their close association with their scientific roots. 

Over parameterization emerges as a problem not only in terms of determining the value of the 

parameter, but also the parameter’s connection to its roots.  

It is argued here that a simple kinetic incorporates considerable complexity in its parameter 

determination by forming ‘combined’ parameters. This suggests that for complex systems it is 
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sufficient for most pragmatic purposes to use a simple structure, so long as the model closely 

resembles the base dynamic. It is only if the specific question being asked by the researcher requires 

unbundling of these combined parameters that the task needs to be done. 

It would seem that many parameters which currently compound the over parameterization problem 

in composting science can be ignored in most modelling applications. The possibility that using a 

model with a smaller number of precisely determined parameters may result in greater compost 

understanding is the question than seems to be answered in the affirmative by this work.  

The theoretical basis for this conclusion is established here, as is a theoretical and computational 

method to test the validity of the theoretical conclusions. At the very least, these are tools which can 

be used for detecting aspects of the composting time course. These may have value in reducing 

some of the statistical variation that makes composting research so difficult. 
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