
1 

 

PARAMETER DETERMINATION IN 
COMPOSTING – Part III 
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INTRODUCTION 
Composting is a microbiologically driven process and this necessitates consideration at the microbe 

scale as this is the scale at which both microbial kinetics and the basic laws of nature operate.   

As a contribution to modelling at sub-particle scales, Chapman (2008) proposed a finite volume 

approach, called micro-environment analysis (MEA), to extend our instrumentation precision to sub-

particle scales. MEA however, is still a very ‘course’ tool as it used a spherical geometry which 

implies that a particle is spherical, has a smooth surface and is not affected by its neighbour 

(specifically the particle is assumed to be surrounded by air at the same oxygen concentration). 

Composting particles will clearly differ from this geometrical ideal.  

We cannot deny the involvement of these aspects in composting. The question for this paper is how 

our models accommodate (or not) these aspects. Surface roughness and the consequences of ignoring 

its effect on parameter determination is considered in detail.  

Analytical boundary 

The concept of an analytical boundary was used by Chapman (2008) to denote the boundary location 

in modelling space that represents a composting particle. This arose from the need to apply diffusion 

laws to explain the distribution of oxygen at micro-environment scales (sub-particle scale). This 

analytical boundary exists in modelling space (in the sense that a particle will be described by a 

representative geometrical form e.g. a sphere, cylinder or planar). Our parameters are therefore 

determined within the context of this geometrical form; consequently it is only if the geometrical form 

exactly describes an actual particle that the value of the parameters could be said to be true. All other 

situations will generate parameters which reflect in some way the differences between the geometry 

and the actual particle. 

These differences are likely to be: 

 Irregular particle shape.  

 The surface of the geometry would differ from the real particle surface, impacting surface 

area dependent calculations. 

 Some of the air-space will exist within the analytical boundary and affect parameter 

determination, such as: 

o Micro-pores effect on the diffusion coefficient. 

o FAS determinations which measure total air volume, rather than the volume outside 

the analytical boundary.  
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o Micro-environment #1 volume calculations – MEA assumes that all the micro-

environment is composed of contributing substrate. The outer micro-environment is 

likely to have a different proportion of air-space than those formed deeper in the 

particle.  Consequently it is likely to behave differently to the others as it will have a 

lower energy density. 

One could model each of these effects and in theory adjust for them; and then solve the over 

parameterization problem that would be compounded by these additional parameters.  However, a 

simpler solution may be to accept the imperfection and allow the effects to be incorporated into other 

parameters; particularly if these other parameters fit more easily into the proposed model. For 

example, micro-porosity is a potentially important component of a composting particle’s time course 

but it may be adequately represented by incorporating it into the diffusion coefficient that applies on 

the particle side of the analytical boundary. Similarly, a shape factor could be used in conjunction 

with particle size to determine an ‘effective particle diameter’. That is, two parameters can be merged 

into one. The effective particle diameter being the net effect of both particle size and its shape 

characteristics i.e. how the particle behaves relative to its geometrical size (it includes the 

imperfections but is not inherently capable of predicting them).  

If there is no allowance for these micro-scale effects in our models and these models require 

parameters to be determined from experimental data, then a question arises as to what happens to the 

consequences of these micro-scale effects. This paper explores this question for the surface roughness 

effect.  

METHOD 

Meshing a model’s perfect Geometry with an imperfect particle surface 

An analytical boundary based on a geometrical form is very useful as it accesses the rigour of 

mathematics; however the real world is not so perfect. How this chosen geometrical form relates to a 

real particle is therefore relevant to the modelling question.  

For the case of a composting particle, a diffusing substance responds to concentration differences in 

its immediate vicinity. However, when considering oxygen diffusion from the surrounding pores into 

a composting particle, the oxygen must first transfer from the air to the particle surface and this is 

governed by Henry’s law rather than diffusion laws (Sole-Mauri, Illa, Magri, & Prenafeta-Boldu, 

2007). Both Henry’s law and diffusion laws apply to the particle surface - they are surface area 

phenomenon. Indeed, surface flux (the quantity of oxygen which crosses a unit surface in unit time) 

derivations of diffusion laws are commonly used in composting (Bouldin, 1968); (Hamelers, 2001).  

Consider a part of a particle surface (A in Figure 1) and its relationship with: 

 the interstitial air,  

 the actual oxygen penetration distance (B), and 

 the geometry chosen to represent the particle (C). 
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The actual oxygen penetration distance will be reasonably consistent for all surfaces. Although 

variation from the average would occur in the base of ‘trenches’ where penetration distance would be 

less than average (the surface flux of oxygen must supply a larger volume of compost); and the 

‘peaks’ where the penetration distance would be expected to be greater than average (the surface flux 

has less volume of compost to supply). This variation could be modelled by using the appropriate 

geometry at each characteristic surface feature, such as: 

 a hemispherical or cone geometry for describing the distribution in specific humps on the 

surface, and 

 a cylindrical geometry to model the trenches and micro-pores (micro-pores would differ from 

trenches in having a steadily decreasing oxygen concentration with distance into the pore). 

However, using an ‘average’ oxygen penetration distance has some appeal as the greater than average 

parts will tend to balance with the less than average parts. Spending time and computing power on 

this detail is not likely to greatly increase our understanding of composting. This variation in oxygen 

penetration distance is likely to be far less important than the oxygenated surface area available. In 

contrast, any surface irregularities which increase the surface area will increase the total amount of 

oxygen entering the particle, and increase the particle’s composting rate. 

From the modelling perspective, MEA requires determining the volume of each micro-environment 

and this is most conveniently done using oxygen penetration distance. This enables the volume to be 

determined by difference between the inner and outer spheres (see case II below for the details of 

this). The ‘actual’ oxygen penetration distance however is a particle surface phenomenon and 

diffusion laws apply to the particle surface rather than our model surface. The greater surface area of 

the particle relative to our model geometry will mean that the observed composting rate will be 

C 

Interstitial air Irregular surface 

Micro-pores 

A 

B 

Particle 

Figure 1 – The nature of the relationship between a particle surface (A) the geometry attempting to describe the 

composting time course (C) the actual oxygen penetration depth (B). 
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greater than our models would predict if the same diffusion coefficient were applied to our geometry 

surface. It is how this difference in the surface area is accommodated in models which include surface 

area based processes which is the issue addressed here.  

Specifically, it is the apparent increase in the composting rate from geometrical perfection which is of 

interest here. Note that strictly speaking it is our model which is incorrect, not the observed 

composting rate, but please allow a small degree of anthropocentrism here.  

Two cases can be argued. The first case is from the particle perspective while the second case is from 

the model perspective.  

Case 1 – Oxygen flux at the particle surface 

To simplify the maths, consider a special case of surface roughness where ridges and troughs exist 

with an angle of 90
o
 (one may also find it convenient to consider the particle to be represented by a 

flat surface of the same area so the ridges can occupy the entire area).  

 

 

In Figure 2 at any intersection of the model surface with the actual surface AE, the particle surface 

area is (AB + BC + CD + DE) * DL while the model surface area is AE * DL. For this special case if 

AB = BC = CD = DE = 1, then AC = CE = √2 = 1.414 and AE = 2.828. The ratio of the two surface 

areas is: 

Equation 1 

𝑆𝐴𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
𝑆𝐴𝑚𝑜𝑑𝑒𝑙

=
4 × 𝐷𝐿

2.828 × 𝐷𝐿
= 1.414 

If the surface flux of oxygen is determined by diffusion laws and each gram of oxygen generates 

15.94 KJ of energy, then the observed composting rate will be determined by the particle surface area 

and the flux of oxygen: 

Equation 2 

𝑄𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝑆𝐴𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 × 𝑜𝑥𝑦𝑔𝑒𝑛 𝑓𝑙𝑢𝑥 × 0.0627  

Where the oxygen flux can be determined using Bouldin’s (1968) – model II (the model used by 

Chapman 2008):  

L 
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D 

Particle 
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Model 

surface 

A 

B 

Figure 2 – A hypothetical surface roughness composed of ridges and troughs at a 90o angle. 
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Equation 3 

𝑜𝑥𝑦𝑔𝑒𝑛 𝑓𝑙𝑢𝑥 =  2 × 𝐶0  × 𝐷 × 𝑉𝑂𝑅     mg O2 cm
-2

 s
-1 

Where C0 = oxygen concentration in the surface of the particle. 

 VOR = volumetric oxygen consumption rate   mg O2 cm
-3

 

The composting rate (Qparticle in Equation 2) is determined experimentally, yet our models are 

attempting to explain this observed value using a particular geometry. In terms of the model, our 

calculations are based on SAmodel (see Chapman (2009) for determining parameters needed for this 

model), yet we are unable to ignore the fact that the observed composting rate is determined by the 

SAparticle.  Hence rearrange Equation 1 and insert into Equation 2: 

Equation 4 

𝑄𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝑆𝐴𝑚𝑜𝑑𝑒𝑙 × 1.414 × 𝑜𝑥𝑦𝑔𝑒𝑛 𝑓𝑙𝑢𝑥 × 0.0627  

Equation 2 and Equation 4 balance with the same value for oxygen flux if we adjust our model 

surface area for the actual surface area of the particle (1.414 in this case). Our model is consistent 

with the particle composting rate. 

However, if this ratio is unknown or not used, then in order for Equation 2 and Equation 4 to equate 

via their common value Qparticle (knowing the two surface areas are different), there must a difference 

in oxygen flux in inverse proportion to the surface area ratio i.e.:  

Equation 5 

𝑜𝑥𝑦𝑔𝑒𝑛  𝑓𝑙𝑢𝑥  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑜𝑥𝑦𝑔𝑒𝑛  𝑓𝑙𝑢𝑥  𝑚𝑜𝑑𝑒𝑙
=

𝑆𝐴𝑚𝑜𝑑𝑒𝑙  

𝑆𝐴  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
  

However the parameters used to determine the flux in Equation 3 need to apply to the particle, yet we 

are describing the composting time course using a model. Consequently, for Equation 3 to be valid as 

a descriptor of oxygen flux when in the perfect geometry of the model, then the difference in the 

oxygen flux identified in Equation 5 must arise from either or both:  

 VOR (i.e microbial kinetic (k) and/or substrate parameters (E(0)) and/or  

 Diffusion coefficient (D).  

If the model has a high r
2
 then it follows that the parameters determined for a particle which is less 

than perfectly smooth and not perfectly spherical will accommodate this imperfection in its 

parameters. Consequently, they will differ slightly from ‘real’ parameters (those determined for a 

particle which is perfectly spherical and perfectly smooth). There is a question as to which 

parameter(s) accommodates this imperfection, but not a question as to the imperfections being 

accommodated. 

Indeed Chapman (2008) used the diffusion law flux approach (Equation 3) in conjunction with the 

flux determined from the observed composting rate and actual particle surface area to attempt to 

detect the effect of substrate diffusion
1
 and needed to adjust the diffusion coefficient to get the two 

graphs to align (see footnote to Figure 6-8; P.118). Note the same effect would have arisen had he 

                                                      
1
 Note that Chapman now attributes the effect to anoxic degradation rather than substrate diffusion, as substrate 

diffusion was shown to be accommodated in the fraction’s parameters (see Part II of this series). 
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changed E(0). This is possible experimental evidence of the surface roughness effect, although 

making the particles with finer size tolerances and counting the actual number would be needed to 

confirm this.  

Case II – Model perspective 

Chapman (2008) determined micro-environment volume proportion by subtracting the volume of the 

inner sphere from the volume of the outer sphere and divided the result by the particle volume. Thus, 

if zmodel is the oxygen penetration distance (from the model geometry perspective) and r is particle 

radius then the aerobic proportion (Φ) can be determined by: 

Equation 6 

Φ =
Volume   r  − Volume  (r−zmodel )

Volume  (r)
  

Z can be determined for a zero-order oxygen consumption rate solution of diffusion law. This is 

relative to the particle surface rather than the model surface so an appropriate subscript is required: 

Equation 7 

𝑧𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =  
2×𝐷×𝐶

𝑉𝑂𝑅(𝑡)
  

The volumetric oxygen consumption rate (VOR) required in Equation 7 is determined from the 

observed volumetric composting rate (Q) (Chapman 2008) by: 

Equation 8 

𝑉𝑂𝑅(𝑡) = 𝑄(𝑡) × 0.0627  

To relate zparticle to zmodel consider that the ‘actual’ aerobic volume can be determined to a close 

approximation by assuming zparticle applies equally across all surfaces. Then the aerobic volume (Vaer) 

can be determined using a planar geometry: 

Equation 9 

𝑉𝑎𝑒𝑟 = 𝑆𝐴𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 × 𝑧𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒   

 If the surface area ratio of particle and geometry is defined as γ, then SAparticle = SAmodel * γ. 

The aerobic volume of Equation 9 can be formulated relative to the model geometry by: 

Equation 10 

𝑉𝑎𝑒𝑟 = 𝑆𝐴𝑚𝑜𝑑𝑒𝑙 × 𝛾 × 𝑧𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 4 × 𝜋 × 𝑟2 × 𝛾 × 𝑧𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒   

Chapman’s model determines the model aerobic volume by the difference between two spheres thus: 

Equation 11 

𝑉𝑎𝑒𝑟 =  
4

3
× 𝜋 ×  𝑟3 −  𝑟 − 𝑧𝑚𝑜𝑑𝑒𝑙  

3   

For the two volumes to equate, a ‘model equivalent z’ (zmodel) needs to be determined.  To do this, 

equate Equation 10 with Equation 11 and rearrange:  
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Equation 12 

𝑧𝑚𝑜𝑑𝑒𝑙 = 𝑟 −  𝑟3 − 3 × 𝑟2 × 𝛾 × 𝑧𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
3

     zmodel ≤ r 

Note: zmodel in Equation 12 can exceed particle radius. This arises from both the SA ratio and 

combining the essentially planar geometry of oxygen diffusion, used above, with the spherical 

geometry of the model.  

Insert Equation 7 and Equation 8 into Equation 12 to enable the observed composting rate and 

diffusion laws to determine oxygen penetration distance within the model geometry framework.  

Equation 13 

𝑧𝑚𝑜𝑑𝑒𝑙 = 𝑟 −  𝑟3 − 3 × 𝑟2 × 𝛾 ×  
2×𝐷×𝐶

𝑄𝑆  𝑡  × 0.0627

3

    zmodel ≤ r 

Using Equation 13 in Equation 6 could give a good approximation of diffusion laws’ effect within the 

model geometry framework. However, the difficulty in determining the surface area ratio (γ), limits 

the application of Equation 13.  

Consider what would happen if we did not adjust for particle surface roughness. That is γ =1.  

We have two ways of determining aerobic proportion: firstly, diffusion law determination (i.e. 

Equation 6 and Equation 13 above) and secondly from the microbial kinetics model. These should 

equate.   

For any particular electron acceptor/fraction combination (S) the first-order kinetic composting model 

used by Chapman (2008) was: 

Equation 14 

𝑄𝑆 𝑡 = 𝑘𝑆 × 𝐸𝑆(𝑡) × 𝑁𝐵𝑆(𝑡) × Φ(t)  

Which can be rearranged to determine Φ(t) as the ratio of the observed composting rate: model 

composting rate using oxygen as an electron acceptor. 

Combining all of the above into a single equation and using V to represent the volume of a sphere 

gives: 

Equation 15 

𝑄𝑆 (𝑡)

𝑘𝑆×𝐸𝑆 (𝑡)×𝑁𝐵𝑆 (𝑡)
= Φ(t) =

𝑉 𝑟 −𝑉 𝑟− 𝑟− 𝑟3−3×𝑟2×𝛾× 
2×𝐷×𝐶

𝑄𝑆 𝑡 ×0.0627

3
  

𝑉(𝑟)
  

Note: The RHS of Equation 15 could be simplified further but in this form it is comparable to 

Equation 6 i.e. inner sphere radius = r-zmodel.  

If one could determine γ, then Equation 15 could be solved by iterative means, but the relevant point 

for this argument is that if QS(t) changes then the effect on the LHS will differ from the effect on the 

RHS i.e QS(t) on the LHS versus 
3
√[1/ QS(t)] on the RHS. That is, the difference in the composting 

rate arising from roughness on the particle surface would appear computationally as a ‘change’ in the 



8 

 

aerobic proportion that is determined. This is an inevitable consequence of changing γ in the RHS of 

Equation 15. This ‘change’ could include the implicit assumption that γ = 1 if there is no adjustment 

for surface roughness. 

Because surface roughness is a pre-existing condition of a composting particle this ‘change’ in the 

composting rate would not occur in the composting time course. Rather, the higher composting rate 

would apply from the beginning and the value of the parameters would reflect this.  

The question here, as in case I, is what parameter(s) would accommodate the surface roughness effect 

if it is not included as a separate parameter in the model? To investigate this question in more detail, 

consider two factors: 

 The consequences of a change in Φ(t).  

 The balance required in Equation 15 where microbial kinetic parameters only appear on the 

LHS.  

Because the model parameters must describe the peak composting rate (the point used by Chapman to 

determine E(0)), then a change in aerobic proportion would also change the magnitude of E(0) – 

assuming there is no direct impact on the value of k and NB(tmax). A further constraint arises from the 

second point noted above, that is the need for Equation 15 to balance. In this constraint the aerobic 

proportion is determined on the RHS by particle geometry, diffusion law and the observed 

composting rate. There is thus a balance between biology on the LHS and physics on the RHS in 

Equation 15. Our models are describing the biology side of Equation 15. Yet changing the biology 

parameters in any iteration has no effect on the RHS (experimental data is used here); aerobic 

proportion will not change. It follows that all the effect of surface roughness is accommodated in the 

kinetic and substrate parameters. Initially in E(0), however E(0) will have a secondary effect on most 

other kinetic parameters via its effect on NBtrans (see Part I for the inter-relationships between all the 

kinetic parameters). It is possible that the value of the rate constant could be affected if these 

secondary effects extend to the one-exponent constant. 

It should be noted here that, as in case I, the difference due to surface roughness could also be 

accommodated in the diffusion coefficient. In this case aerobic proportion (Φ(t) in Equation 15) 

would also change, so the effect would be shared between D and the kinetic/substrate parameters. 

Note that D could change between the outer micro-environment (which would include micro-porosity 

and surface roughness), and subsequent micro-environments.  

No attempt will be made here to determine precisely how the effect of surface roughness is taken up 

by each parameter, as the main aim of this paper is to show that the surface effect is incorporated into 

the parameters, the details may be of scientific interest but the consequences are of little practical 

significance. For anyone with an interest in this detail the potential linkages have been identified 

above. 

RESULTS 
Some possible evidence for the effects discussed above is visible in Chapman’s (2008) thesis results – 

reproduced in Figure 3. This data would suggest that both the diffusion coefficient and substrate 

concentration accommodate the difference between the model geometry and an actual particle. 
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Readers should note that these trials were not configured to specifically detect the effect of a perfect 

geometrical boundary with an imperfect particle surface. Interpret these conclusions with an 

appropriate level of caution. 

 

Figure 3– Modelled versus measured composting rate for the 1.33 cm pig faeces particles with 2 diffusion 

coefficients.  Note the lower value diffusion coefficient required more substrate (0.015 v 0.01 MJ cm
-3

) for the 

model to fit the data curve. Data from Chapman (2008, p. 115). 

CONCLUSION 
If the intended use of a model is to understand the composting time course then there is no need to 

accommodate the detail that arises from the difference between our preferred model geometry and 

actual particle shape and surface characteristics.  

This occurs because, with the need to determine many of the model parameters by experimentation, 

then fitting the model to the data incorporates these differences into other model parameters such as 

diffusion coefficient and substrate concentration. 

This accommodation appears to include the particle surface characteristics (discussed in this paper) 

and substrate diffusion and solubilisation (in Chapman (2009). The validity of simplified models as a 

means of avoiding the problems of over parameterisation that has been identified in composting can 

have a firmer theoretical footing.   
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